
 
 
 

Using a Creativity Model to Solve  
The Place-value Problem in Kindergarten 

Patricia D. Stokes 
Columbia University, USA 

 

A creativity model based on paired constraints was used to solve a core problem in 
early American math education, place-value. To create the solution, one set of 
constraints precluded specific elements in existing math curricula. The other promoted 
substitutes, including an explicit base-10 count and a single manipulative, a count-
and-combine chart that visually represented the base-10 decimal system and promoted 
highly-focused practice in combining tens and ones in single- and double-digit 
addition and subtraction. The new curriculum was piloted for the entire school year. 
At pre-test, there were no differences between children in the pilot and control 
(regular curriculum) groups. At post-test, the pilot group outperformed the control 
not only on place-value, but also on single- and double-digit addition and subtraction, 
and number line estimation. The evidence suggests that creativity models can make 
significant contributions to solving problems in early education. 

 
 

INTRODUCTION 
The term place-value is self explanatory. The placement of each digit in a multi-digit 
number determines the number’s place value. In a two-digit number, the values of the 
two places are tens and ones, with the tens represented by the digit on the left and the 
ones represented by the digit on the right. The place-value problem is this. American 
children mistake, for example, the two ones digits in the number they call “eleven” 
(11) as being of equal value. Chinese, Japanese, and Korean children, who call the 
same number “ten-one,” do not make that mistake (Miura & Okamoto, 2003). In 
consequence, they outperform American children not only on place-value, but also on 
multi-digit addition and subtraction (Fuson & Kwon, 1992; Song & Ginsberg, 1987; 
Stigler, Lee, & Stevenson, 1990).     

The proposed solution (to the place-value problem, and by extension, to the multi-
digit addition and subtraction problems) was developed using a problem-based creativity 
model. The solution was structured in what is called a problem space (Newell & 
Simon, 1972). A problem space has three parts: an initial state, a goal state, and between 
the two, a search space for creatively constructing a solution path. The construction is 
creative because the path is new. In the model, constraint pairs are used to structure 
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the path (Reitman, 1965; Simon, 1973; Stokes, 2006, 2010, 2013a). One of each pair 
precludes something specific in the initial state; the other directs or promotes search 
for a substitute. The process has been called solution by substitution (Stokes, 2012, 
2013b, 2014).   

Creating the Solution 
The goal was not simply to introduce an explicit base-10 counting system (count for 
short), but to embed it in a curriculum that taught children to think mathematically: in 
patterns and structures, using numbers and symbols to represent the patterns and 
structures. The name of the new curriculum – Only the NUMBERS count© -reflects 
its goal.  Table 1 shows the problem space.     
 

Table 1 
Problem Space for New Math Curriculum 

_____________________________________________________________________ 
Problem Parts     Description 
_____________________________________________________________________ 
Initial State    Current curricula 
Search Space           Constraint pairs 
                       Preclude  Promote 

      English language count                 Explicit base-10 count 
      Multiple manipulatives                 Single manipulative 
      Non-numeric                                 Numbers, symbols, patterns 
      Split practice                   Deliberate practice 
Goal State     New curriculum 
Criterion     Thinking in numbers, symbols, and patterns 
_____________________________________________________________________ 
 

The initial state was current curricula, characterized by components in the preclude 
column of the search space. The goal state was a new curriculum, characterized by 
substitutions in the promote column of the search space. I consider each preclude-
promote pair in turn.  

Solution by Substitution 1: The Explicit Base-10 Count  
The primary constraint pair precluded the English count, and promoted in its place an 
English language version of the Asian (i.e., Chinese, Japanese, and Korean) counts. 
The differences between the two – one concealing, the other clarifying the recursive 
base-10 patterning of the number system - account in large part for the American child’s 
problem with place-value (Fuson, 1990; Miura & Okamoto, 2003). The differences 
are readily apparent in Table 2, which compares the English and the Asian counts 
from 10 through 39.    

There are several important things to notice. First, in the Asian count, there are 
only ten number names (1 to 10) that combine to form the higher, two-digit numbers. 
The combination algorithm is itself apparent in the count. Second, ten appears in every 
number name for the Asian count above ten in the table, but only once for the English. 
Just look at 11. The English number name eleven does not suggest place-value, 
whereas the Asian number names, which translates to ten-one, specifies it. Third, the 
order of the Asian number names parallels that of the marks. Ten-six has the same 
place-value ordering as the written marks 16. The English name sixteen reverses the 
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order, putting the single digit 6 in the 10’s place. This occurs for the numbers 14 
through 19, with the names for the numbers 11 through 13 further diverge from the 
place-value.  

 
Table 2 

English and Asian (Chinese, Japanese, Korean) Number Names 

Numbers      Names                Numbers      Names                      Numbers       Names 
English      Asian         English        Asian                       English          Asian 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

ten 
eleven 
twelve 
thirteen 
fourteen 
fifteen 
sixteen 
seventeen 
eighteen 
nineteen 

ten 
ten-one 
ten-two 
ten-three 
ten-four 
ten-five 
ten-six 
ten-seven 
ten-eight 
ten-nine 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

twenty 
twenty one 
twenty two 
twenty three 
twenty four 
twenty five 
twenty six 
twenty seven 
twenty eight 
twenty nine 

two-ten 
two-ten-one 
two-ten-two 
two-ten-three 
two-ten-four 
two-ten-five 
two-ten-six 
two-ten-seven 
two-ten-eight 
two-ten-nine 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

thirty 
thirty one 
thirty two 
thirty three 
thirty four 
thirty five 
thirty six 
thirty seven 
thirty eight 
thirty nine 

three-ten 
three-ten-one 
three-ten-two 
three-ten-three 
three-ten-four 
three-ten-five 
three-ten-six 
three-ten-seven 
three-ten-eight 
three-ten-nine 

 
As a consequence of their counts, American children think of numbers as collections 

of 1s; Asian children think of them as multi-unit structures of 10s and 1s (Fuson, 1990). 
If you call a number (21) “twenty-one,” you will think of it as 21 ones. If however, you 
learn to call it “two-ten-one,” you will think of it as 2 tens and a one. Thinking the 
second way, place-value will not be a problem.1   

Solution by Substitution 2:  The Single Manipulative  
Manipulatives are organizational tools that physically represent problem structures 
(Zydney, 2008). The most effective ones “capture key structural features of desired 
internal representations and map onto them in transparent ways” (Siegler & Ramani, 
2009, pa. 547). Important too are the consistent, long-term use of specific manipulatives 
(Sowell, 1989) with “salient features that suggest the correct meanings, do not possess 
misleading features and are linked over a sustained period to the target mathematical 
words and written marks” (Fuson and Burghardt, 2003, p. 299). 

The italics are mine. To focus attention over a sustained period on the salient features 
of our number system and their linkages to place-value and single- and multi-digit 
addition and subtraction, a specific, single manipulative (the count-and-combine chart) 
was used throughout the school year. The hope was that the chart with its moveable 
parts, would, like the abacus, make numbers tangible, concrete things with visible 
patterned relationships among themselves. The relationships, along with the chart, 
were expanded as the school year progressed.    

The first count-and-combine chart (shown in Figure 1) externalized numeric-
symbolic relationships for numbers 1 through 10.    

                                                
1 This core difference becomes evident when children are asked to represent numbers using base-10 

blocks [for a review, see Miura & Okamoto, 2003].  Most first graders in China, Japan and Korea 
represent multi-digit numbers with tens and ones blocks; most American children only use ones blocks 
(Miura, Kim, Chang, & Okamoto, 1988; Miura, Okamoto, Kim, Steere, & Fayol, 1993).  
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Figure 1.   First Count-and-Combine Chart: One to Ten. 
 
Notice the number of times the equals sign is shown. This was to ensure that children 

learned that it means “is the same as” or “equals” or “is equal to” rather than the 
common misinterpretations among American school children, who “read” the equals 
sign as meaning “adds to,” “makes,” “the answer,” or “the end is coming” (Knuth, 
Stevens, McNeil, & Alibali, 2006;  McNeil & Alibali, 2005; Rittle-Johnson & Alibali, 
1999; Seo & Ginsburg, 2003). 

Numbers, symbols, and “blocks” were made of velcro-backed laminated poster 
board. Children interacted visually (seeing the patterns), verbally (reciting each row 
out loud), and tactilely (moving the parts to produce “combinations”) with the large 
class-size chart. The word combination is used purposively: numbers are combinations 
of other numbers. 

Recitation took the following form: 
Number one same as word one equals one block. 
Number two same as word two equals two blocks. 
Number three same as word three equals three blocks… 

Figure 2 shows how children manipulated the “blocks” (on the chart or from baskets 
of blocks on their tables) to make combinations for three.   

 
3 = Three =  +  +  
3 = Three =   +   
3 = Three =  +    

Figure 2.   Addition Combinations for 3. 
 
On the first line, three “equals” or is “the same as” one block plus one block plus one 

block. On the second, it is “equal to” two blocks plus one block. The third line reverses  

1 = One =             

2 = Two =             

3 = Three =             

4 = Four =             

5 = Five =             

6 = Six =             

7 = Seven =             

8 = Eight =             

9 = Nine =             

10 = Ten =           = 10 
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the second, one block plus two blocks. Children called this a “flip.”2  
Figure 3 shows the second chart for numbers 10 through 20 (two-ten).  
 

10 = Ten = 10           
11 = Ten-one = 10           
12 = Ten-two = 10           
13 = Ten-three = 10           
14 = Ten-four = 10           
15 = Ten-five = 10           
16 = Ten-six = 10           
17 = Ten-seven = 10           
18 = Ten-eight = 10           
19 = Ten-nine = 10           
20 = Two-ten = 10 10          

Figure 3.   Second Count-and-Combine Chart: Ten to Two-ten. 
 
Notice that ten is represented by a single block marked with the number 10. This is 

to emphasize that 10 is a unit in itself, not just a grouping of 10 ones. Notice too that 
20, which is called two-ten, is represented by two 10 blocks. The next number 21, 
which is called two-ten-one, would be represented by two 10 blocks and one 1 block.    
The children did not use the 10 to 20 chart until they knew all the combinations (with 
one plus sign) for numbers up to, and including, 10. In reciting the chart, children 
always used the Only the NUMBERS count© base-10 names. For example, the second 
line was recited,    

 Number ten-one same as word ten-one equals one 10 block and one 1 
block. 

Solution by Substitution 3: The Strictly Mathematical 
Experts differ from novices in their ability to perceive and solve problems using large 
meaningful patterns and structures in their areas of expertise (Ericsson, 2006; Newell 
& Simon, 1972). For example, the patterns for writers are represented by words; for 
musicians, pitches. For mathematicians, the patterns are represented by numbers and 
symbols. With practice, and practice primarily with numeric-symbolic patterns. I 
hypothesized that young children could learn to think and problem solve like 
mathematicians. There was another reason for this focus on the strictly mathematical. 
The literature on analogy shows that transfer depends on recognizing similarities in 
elements or structures (Fuchs, Fuchs, Prentice, Burch, Hamlett, Owen, Hosp, & Jancek, 

                                                
2  There are actually four combinations for 3. The fourth is shown on the original count chart – 3 blocks 

together. More generally, for any given natural number, there are 2n-1 natural number sum combinations.  
Thus, with n = 3, we have 23-1 = 22 = 4 combinations. 
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2003; Gick & Holyoak, 1980, 1983; Holland, Holyoak, Nisbett, & Thagard,1986; 
Holyoak & Thagard, 1999). In this view, without an existing mathematical structure, 
there is nothing onto which a child can transfer a word problem. Word problems were 
therefore postponed to late in the school year. 
Solution by Substitution 4:  Deliberate Practice 
By split practice, I meant switching between kinds of problems and/or materials. For 
example, the control class (which used New Jersey Mathematics: Scott Foresman-
Addison Wesley) “worked on” numbers through 5 early in the school year. Working 
included: reading a math story and counting the objects in the story, playing a number 
game with a spinner and markers, making groups with tiles, and matching written 
numbers with groups of objects. “Working on” did not include addition until May, nor 
subtraction until June. In between, students worked on miscellaneous topics, including 
measurement, time, money, and shapes.    

In contrast, lesson plans in the pilot were based on what is called “deliberate 
practice” (Ericsson, 2006; Ericsson, Krampe, & Tesch-Romer, 1993). Deliberate means 
focused on specific aspects of a skill to be developed in highly varied ways. Variation 
here means switching between solutions rather than between kinds of problems or 
materials. Practice with the chart and the moveable blocks was iterative and elaborative. 
Children practiced the pattern of the base-10 count by reciting and reconstructing each 
chart. They practiced the structures of base-10 solutions for addition and subtraction. As 
the numbers increased, so did the number of possible combinations. For example, there 
are 4 combinations for three (3, 2 + 1, 1 + 2, 1 + 1 + 1), 8 for four (4, 3 + 1, 1 + 3, 2 + 
2, 2 + 1 + 1, 1 + 1 + 2, 1 + 2 + 1, 1 + 1 + 1 +1), 16 for five, and so on.    

In principle, this sort of focused, incremental, deliberate practice is remarkably 
similar to a Japanese first grade curriculum described by Murate and Fuson (2006) as 
“coherent, with fewer topics that build over the year,” and contrasted with the “mile 
wide inch deep US pattern” (p. 454).  

 
Research Questions 

Research questions focused on the overall effectiveness of the pilot curriculum as well 
as the contributions of each core component: the explicit base-10 count, the single 
manipulative, and deliberate practice. To evaluate on-going effectiveness, both the 
pilot class and a control class using the district curriculum were observed once a week. 
To evaluate cumulative effectiveness, mathematical performance at the start (pre-
testing) and the end (post-testing) of the school year between the two classes was 
assessed. I predicted that, on the post-test, the pilot class would out-score the control 
on place-value, single- and double-digit arithmetic and subtraction, and perhaps on 
number line estimation.  
 

METHOD 
Participants 
Forty-five kindergarteners in two classes at a suburban public school served as 
participants. The children were not placed in homogeneous groups by ability. Rather, 
sorting was done by gender to equalize the number of boys and girls in each class. 
One teacher and class were randomly chosen to be the pilot group; the other, to be the 
control group. Both groups adhered to the New Jersey State Standards in math. The 
pilot group, like the control, used materials from Scott Foresman-Addison Wesley 
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(Math Series Copyright 2008) to cover the following topics: Time, Money, Patterns, 
Directionality, Graphs/Charts, Fractions, Geometry, and Measurement. The intervention 
replaced materials covering numbers and numeric relations. The time for math was 
allotted equally across groups. Descriptions of each group its respective teacher follow.   

Pilot Group. At the start of the school year there were 23 students (11 female, 12 
male) in the pilot group. Of these, 13 students were Hispanic, 5 were White, and 5 
were Asian; 7 were classified as ESL, 7 as economically disadvantaged. By the end of 
the year, there were 20 students: three males (1 White, 2 Hispanic) had relocated. 
Mean age at the start of the school year was 6 years, 5 months; range was 6 years to 7 
years, 8 months.     

The teacher for the pilot group participated in the development of the new curriculum. 
Teacher and experimenter met once a week. To ensure fidelity of treatment, the 
experimenter and three research assistants also observed the math lesson on the meeting 
day. While the core elements were pre-planned, the timing and fine tuning of their 
implementation depended on the teacher’s judgment of the children’s comprehension 
and thus their readiness to move on to more advanced material. The teacher had 
previously used both Everyday Math© (for two years at another school) and the 
district’s current curricula.  She had four years total experience, all of them teaching 
kindergarten. 

Control Group. At the start of the school year, there were 20 students (10 female, 
10 male) in the control group. Of these, 9 were Hispanic, 8 were White, 2 were Black, 
and 1 was Asian; 3 were classified as economically disadvantaged, 5 as ESL. By the 
end of the year, there were 2 additional students: 1 female (Black) and 1 male (Asian).   
Mean age at the start of the school year was 6 years, 5 months; range was 5 years to 7 
years, 7 months  

The teacher for the control group followed the district’s curriculum. She had eleven 
years experience teaching, all at Washington School.  She taught kindergarten for ten 
years, and first grade for one. 
Procedure And Materials 
The study was conducted in three phases. Phase 1 involved pre-testing to assess 
children’s prior knowledge. Phase 2 involved piloting the base-10 intervention, as 
well as observing on a weekly basis both the pilot and the control classes. Phase 3 
involved post-testing to assess what had been learned. Testing was conducted by the 
primary experimenter and three undergraduate research assistants (2 female, 1 male).   

Phase 1: Assessing Prior Knowledge. Initial evaluations took place at the start of 
the school year. There were two reasons for the pre-test. One was to assure that the 
two classes were homogeneous in mathematical ability and/or preparation before the 
pilot intervention. The second was to compare specific changes in numeric understanding 
after the intervention.   

Table 3 summarizes tasks on the pre-test. Children were tested on their ability to 
count and to recognize numbers and symbols. Both groups were expected to do fairly 
well on these tasks. They were also tested on their understanding of place-value, and 
their ability to locate numbers on a number line. The place-value task was a variant of 
the Choose the Larger Number Test, which requires choosing the larger of a pair of 
numbers (Fuson & Briars, 1990). The child was first asked to name the number (e.g., 
16). Repeating the name given by the child, the experimenter then asked “If this is 
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sixteen, which number is bigger, the first or the second?”3 Children pointed to, rather 
than circled, the larger digit. An answer was scored “correct” only if a child identified 
the larger digit as a ten. With 16, for example, the child might say “the first number is 
really a 10.” For 25, the correct answer would identify the first digit (the 2) as two-
tens or twenty.4 

 
Table 3 

Pre-Test Tasks. 

Category Content 

Counting Children were asked to count as high as they could. Counting was 
coded as correct up to the first error (If a child counted 11, 12, 15, 
her score was 12, the highest number correctly counted). 

Number and symbol identification  
 Children were asked to read aloud 10 written numbers (1, 2, 4, 5, 7, 

8, 12, 15, 20, 32)  and three symbols (plus, minus, equals) presented 
in problem format (e.g., 2 + 2 = 4). Correct responses for the + sign 
were: plus, and N more, add.  Correct responses for the = sign were 
equals or same as. Correct responses for the – sign were: minus, less, 
and take away. 

Place-value Children were asked (a) to read aloud the written numbers 16, 25, 
and 31; (b) tell the experimenter which of each pair was bigger and 
(c) explain their answers. 

Number line. Children were asked to locate the numbers 2, 3, 25, 6, 80 and 67 (in 
that order) on six separate number lines. Each line was marked with a 
0 at one end and a 100 at the other. There were no other marks on the 
line. Before asking the child to locate each number, the experimenter 
said, “Remember, this is a number line, if 0, a little number, is here 
(pointing) and 100, a big number, is here (pointing), where does N 
go?” 

 
Phase 2: Piloting the program. The core materials – the explicit base-10 count, 

the count-and-combine chart, and deliberate practice focused on strictly mathematical 
skills – have already been described. Figure 2 showed how children manipulated the 
blocks to create addition combinations for the number three. This section shows how 
they made addition combinations above 10. Appendix A demonstrates using the blocks 
to do subtraction.   

Breaking Apart the Ones.  Figure 4 shows how the children initially used the blocks 
to create addition combinations for the number ten-three. To make these combinations, 

                                                
3 Since 16 is a two-digit number, the correct terminology is actually “which digit is bigger?”  However, 

since the children were not familiar with the term digit, the question was asked using “number.” 
4 An alternative place-value test using tens and one blocks (Miura, Kim, Steele, & Fayol, 1993) could 

not be used because it replicated what the pilot group would be doing all year.  
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they broke apart the three 1 blocks. This was not difficult, since they already knew the 
combinations for 3.     

 
13 = Ten-three = 10           

    10 +          
    10 +  +  +      
    10 +  +        
    10 +   +       

Figure 4.   Combinations for Ten-three, Breaking Apart Only the Ones. 
 

Breaking apart the tens. Next, the teacher had them break apart the tens. To show 
this efficiently, I use written marks instead of blocks. The children did both, first 
breaking apart the 10 and 1 blocks, then writing out their combinations with marks.  
Recall, as stated above, they did not use the 10 to 20 chart until they knew all the addition 
combinations (with 1 plus sign) for numbers up to and including 10.    

Starting with 13 = 10 + 2 + 1 (the last line of Figure 4), the teacher said, “Can we 
make this longer?” which here meant breaking apart the tens and the ones. 

Breaking the 10 into 7 + 3, the problem became 13 = 7 + 3 + 2 + 1.  
Breaking the 7 into 6 + 1, the problem became 13 = 6 + 1 + 3 + 2 + 1. 
Breaking the 6 into 4 + 2, the problem became 13 = 4 + 2 + 3 + 1 + 2 + 1.  
Continued on, the problem eventually broke down into 

13 = 1+ 1 +1 +1 + 1 +1 +1 +1 +1 +1 +1 +1 +1. 
Notice that the exercise allowed children at all levels to participate successfully: 

the faster ones broke apart the higher numbers (like the 10); the slower ones broke 
apart the lower numbers (like the 3s and 2s). The faster children also demonstrated 
their mastery of combinations by breaking up the numbers without manipulating the 
blocks. 

Recombining the 10s and 1s. The children now recombined numbers they had 
broken apart. For example, starting with 13 = 7 + 3 + 2 + 1, 

If 7 and 2 were combined, the problem became 13 = 9 + 2 + 1. 
If 9 and 2 were combined, the problem became 13 = 11 + 2 which, arranged with 

loose blocks on their tables, would look like this  
 
                            
                                                                   =                 +   
                                     
 

… and which would be said ten-three equals ten-one plus two. 
Notice how each of the above examples reinforces the idea that numbers are 

combinations of other numbers .Notice too how the use of the 10 blocks and the explicit 
base-10 names reinforces the idea of place-value.     

Phase 3: Assessing New Knowledge. The post-test (see Table 4) administered at 
the end of the school year included old, expanded and new sections.    
 
 
 

10 10 



110      STOKES 

RESULTS 
Since this study involved a small number of students, I present descriptive statistics 
for pilot and control groups at pre- and post-testing. In the discussion section, I include 
data from statewide computerized tests given three years after children participated in 
the study. 
 

Table 4 
Post-Test Tasks  

Category Content 

Counting Identical to the pre-test. 
Number and symbol identification  
 Identical to the pre-test. 

Place-value. Two problems (56, 11) were added to the original 3. 
Number line. One number (50) was added to the original 6. 
Addition Children solved two single digit (3 + 5, 6 + 2) and two double digit 

(12 + 4, 21 +11) problems. They were asked (a) to read the problem, 
(b) solve it, and (c) tell the experimenter how they did it. 

Subtraction Children solved two single digit (5-3, 7-5), and three double digit (10 
– 6, 10 – 10, 22 - 12) problems. They were asked (a) to read, (b) 
solve, and (c) explain their method to the experimenter. 

Combinations Children read three numbers (8, 12, 23) aloud and were asked to 
make up an arithmetic problem ( e.g., __ + ___ =  8) for each. 
Children who made up combinations were asked how they figured 
each one out. 

 

Pre-test Post-test Comparisons 
 In this section, I compare performance in the pilot and control classes on items 
appearing on both pre- and post-tests. For one of these items (number line estimation), 
I include results reported by Siegler and Mu (2008) for Chinese students of comparable 
ages. Table 5 presents average accuracies on three of these: counting, identifying numbers 
and symbols, and place-value.  

Both groups improved on the first two items. At pre-testing, the control group was 
more accurate on both count and number/symbol identification. At post-testing, the pilot 
group was more accurate on number-symbol identification; the groups were comparable 
on counting.  However, counting correctly only indicates knowing order, not place-value.    

Poor performance on place-value by children in the control group demonstrates this. 
None correctly identified the number with the greater value. For all numbers except 
11, most (63%) picked the “bigger number” that “you count up to” regardless of its 
place. For the number 11, all said that the two “ones” were the same or equal. In contrast, 
all children (100%) in the pilot group correctly identified the first of each double-digit 
numeral as larger because it was a ten. Two examples illustrate their understanding.  
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Table 5 
Pre- And Post-test Scores: Average Accuracies 

 Measure 

 Count to 100 Number-Symbol 
Identification 

Place-value 

 Pre  Post  Pre  Post  Pre  Post  

Group M       SD        M       SD M       SD        M        SD M      SD         M        SD 

Pilot 
Control 

12.39  22.32   98.35  22.31 
22.85  28.82   93.45  20.91 

59.43  27.31   98.45   5.67 
67.55  19.01   88.95   9.10 

.0026   .01    100.00    .00 

.0000   .00          .00     .00 

Note:  Accuracy is expressed as proportion correct 
 
For the number 31, one child explained: “The first is always bigger, it’s 3 tens.” For 
the number 11, another said: “The first 1 is a ten, the other is only a one.”   

Figure 5 presents pre-test and post-test log and linear median magnitude estimates 
for both groups on the number line estimation task.     
 

   
 

    
Figure 5.  Pre- and Post-tests for Number Line Estimation. 
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At pre-test, variance in the group estimates for each number was better accounted 
for by logarithmic rather than linear functions. By post-testing, variance in the group 
estimates that was accounted for by the best fitting linear equation (R2) increased 
substantially in the pilot group: from .8843 to .9817. This result is comparable to that 
reported for Chinese children (.95) of the same age group (mean ages at time of testing: 
Chinese, 5 years, 8 months; American, 5 years, 6 months) who generally out-perform 
American children on number line estimation (Siegler & Mu, 2008). The control 
group improved only slightly in their linear estimates (R2s from .6368 to .7644); the 
variance in their post-test results was better accounted for by a log (R2 = .9472) rather 
than a linear (R2 = .7644) equation. This result is similar to that reported for American 
kindergarteners (log R2 = .90) by Siegler & Mu (2008).   

Post-test Comparisons. Five different problem types only appeared on the post-test:  
single and double digit addition, single and double digit subtraction, and addition 
combinations. Table 6 presents average accuracies on these items. In both groups, 
accuracies were higher on single vs. double digit addition and subtraction problems. 
However, on all items, the pilot group performed far more accurately than the control. 

 
Table 6 

Post-test Scores: Average Accuracies 

 Measure 

 Addition Subtraction Addition 
Combos 

 Single Digit Double Digit Single Digit Double Digit  

Group M         SD  M        SD  M       SD  M        SD  M      SD 

Pilot 
Control 

97.50  11.18     36.65  26.42 
54.54  48.57       7.54  17.59 

95.00  15.38     66.80  21.73 
18.18  36.33       7.59  20.46 

86.70  27.35 
24.22  34.44 

Note:  Accuracy is expressed as proportion correct 
 
The pilot group outscored the control on all measures, and more so when the problems 

involved double digits. Dramatic differences appeared in the group’s understanding of 
subtraction. For single digit subtraction problems, 45% of the pilot group said they took 
the second number away from both sides of the subtraction sign. For example, with 
the problem 5 – 3 a typical explanation was: “I took 3 away from the 5 and the 3.” As 
shown in Appendix A, this is how subtraction was taught. For double digit problems, 
46% said they “knew” the answer.  In contrast, 37% of children in the control group 
used addition in the single digit problems, 59% added in the double digit problems. 

Differences in creating addition combinations were not surprising. Only the pilot 
group had experience with this task. For single digit combos, 65% of these children 
reported using “doubles” (e.g. 4 + 4 = 8); for the double digit combos, 60% used “the 
ten blocks” (e.g., 10 + 2 = 12, or 10 + 10 + 3 = 23).    

 
DISCUSSION 

The aim of this study was to evaluate the effectiveness of an early math curriculum 
designed to teach children to think and problem solve in base-10 and, by extension, 



PLACE-VALUE PROBLEM      113 

the creativity model used to design the curriculum. Overall effectiveness was confirmed 
in the correspondence of results and predictions: kindergarteners in the pilot group 
outperformed those in the control group on place-value, single- and double-digit addition 
and subtraction, and number line estimation.   

Why did the new curriculum work so well? To answer, I review the contributions 
of the core components and the paired constraint model that created them. I then 
consider two possible confounds, and answer three critical questions before offering 
conclusions. 
 

Contributions of the Core Components 
Contribution of the Count: Thinking in base-10    
The explicit base-10 count facilitated mastery of place-value and by extension, multi-
digit calculation. This is because the explicit count named the place of each number. 
For example, 26 is called “two-ten-six.” Children using this kind of count think of 26 
as two 10s and a 6. Thinking this way makes place-value obvious.    

Thinking this way is also how Wegerif, in a recent interview, described the result 
of “speaking the language of mathematics” as becoming, in part, “a mathematician and 
thinking the world as a mathematician would think it” (Shaughnessy, 2014a, p. 41). 

Contribution of the Count-and-Combine Chart:  Externalizing base-10  
Like the abacus, but simpler, the count-and-combine charts were designed to make 
abstract base-10 relations/patterns visual and concrete. Like the abacus with its 
moveable beads, the charts with their moveable “blocks” made numbers and symbols 
tangible, things in themselves, with clearly patterned relationships among themselves. 
All charts embodied the base-10 patterning of the number system. All were structurally 
similar, the numbers combining regularly in step-wise fashion, visualizing the repetitive 
patterns in the count and the combinations. Importantly, the 10 block – which 
represented 10 as a unit, rather than as a group of 10 ones - externalized place-value 
per se. 
Contribution of Deliberate Practice:  Expertise in base-10 
Deliberate practice is highly focused and highly variable. The focus was base-10 patterns 
and relations. The practice was iterative and elaborative. Children practiced the pattern 
of the base-10 count by reciting and recreating each chart. They practiced the structure 
of base-10 solutions for addition and subtraction problems. As a result of such practice, 
they became experts, pattern-seekers and problem-solvers in base-10.  
 

Contribution of the Creativity Model 
That American children have problems with place-value is not surprising. The problem 
has long been attributed to irregularities in the English language count that conceal 
rather than clarify the recursive base-10 patterning of the number system (Fuson, 
1990; Fuson & Kwon, 1992; Geary, Bow-Thomas, Liu, & Siegler, 1996; Miura, 
Okamoto, Kim, Steere, & Fayol, 1993). What is surprising is that, while successful 
short-term interventions using, for example, base-10 blocks (Fuson & Briars, 1990; 
Miura & Okamoto, 2003) or “Egyptian” hieroglyphs (Baroody, 1987) have been 
reported, this is the first study involving early immersion in an English language 
version of the Asian (Chinese, Korean, Japanese) counts that make the base-10 
patterning explicit. Why? 
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My suggestion is that the experts - math educators, in particular the makers and 
marketers of math programs and packages - are stuck in “successful” solutions (Stokes, 
2008, 2014). Success here is, in large part, commercial. A representative from a major 
publisher told me that Only the NUMBERS count© could not be profitable without 
adding a lot of “bells and whistles.” Indeed, all the most recent curricula I examined, 
or observed in classrooms, retained all the hallmarks of the preclude column in Table 
1, including the English language count, multiple manipulatives, split practice, videos 
with cartoon characters and work sheets with word problems related to the stories, etc. 
As a result, they are, to large degrees, revisions or elaborations of earlier programs. 
Their substitutions are not significant.5   

The repetition mechanism, I submit, is simple: operant conditioning. It works this 
way. Experts are rewarded for reliably solving particular kinds of problems. They then 
(like the rest of us) reproduce, rather automatically, reliable responses that have “worked” 
in similar situations. These responses include activation of relevant knowledge structures 
or schema (Finke et al, 1992). As a result the variations they produce follow what Ward 
(1994; Ward, Patterson, & Sifonis, 2004) has called the “path of least resistance:” 
new ideas are structured in conventional ways. The same process occurs, perhaps even 
to a greater degree, with groups of experts who tend to rely on knowledge structures 
that are shared (Larson, Foster-Fishman, & Keys, 1994) and that confirm the group’s 
shared beliefs (Schultz-Hardt, Jochims, & Frey, 2002). In short, experts get stuck. 

The paired constraint model is a tool for getting un-stuck. It counteracts the repetition/ 
reliability mechanism by precluding search for substitutions in routinely visited parts 
of a problem space (the usual suspects), and promoting search in atypical, unfamiliar 
parts. The solution process is incremental. The customary elements of an existing 
“solution” (the initial state) are listed in the preclude column. One specific element is 
precluded, and its substitute identified. For the solution path (the promote column) to 
be unconventional and new, the substitution must be uncommon (at least in its context) 
and thus, unexpected. The unfamiliar will, in turn, direct search for subsequent 
substitutions.  

 
Possible Confounds 

Two things must be considered here: practice effects and teacher effects. 

Practice Effects   
There are two kinds of practice effects: one has to do with amount of practice, the 
other with kind of practice. Appendix B, which presents a month-to-month comparison 
of when numeric concepts were introduced in the pilot and the comparison classrooms, 
allows us to compare amount of practice. Children in the pilot group were adding 
numbers as early as September and subtracting by February; those in the control group 
did not do addition until May or subtraction until June. Kind of practice, specifically, 
the core elements of the pilot intervention, made early introduction of single- and multi- 
digit addition and subtraction possible. Children cannot practice what they cannot do. 
Thus, kind of practice, although different, is not separable from amount of practice.    
 
 

                                                
5   Another result is that, as related to me by different teachers using different programs, math packages 

come with more materials than can possibly be used in the time allotted to teach math. 
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Teacher Effects 
There are actually two confounds here. First, the pilot teacher helped develop as well 
as implement the new curriculum. Second, while both teachers used the district’s 
curriculum during the previous school year, children were not tested at the end of that 
year. Thus, we could not compare their relative effectiveness when using the same 
curriculum. However, the pilot teacher repeatedly said that the new curriculum was 
easier than the old, both for her to teach and for her students to learn.    

To more accurately assess teacher effects, the curriculum was recently introduced 
in three kindergarten classes in the same public school. None of the teachers helped 
develop the curriculum. All used the same materials (count, charts, lesson plans). Here, 
I report preliminary data from this study. District-wide computerized math testing 
(Renaissance STAR Math) took place at the sixth month of the school year. In two 
classes, 93% of the children scored above grade level: in both classes, scores ranged 
from 0.5 (fifth month of kindergarten) to 2.3 or 2.4 (third or fourth month of second 
grade). In the third class, 87% of children scored at or above grade level: the range 
was 0.4 (fourth month kindergarten) to 1.8 (eighth month of first grade). The similarities 
here indicate that the pilot results were due primarily to the curriculum rather than to 
the individual teaching it.  

 
Critical Questions 

Three questions must be answered before conclusions can be made. The first concerns 
the standard American count. The second inquires “what comes next?” The third raises 
a challenge:  how new, it asks, is the new curriculum. 

What about the Standard “American” Count? 
The expanded version of this question is: did the children in the pilot group know and 
use the standard count? The answer is yes. Kindergarteners in the pilot group were fluent 
in both the explicit base-10 count and the standard count. For example, they could 
interchangeably refer to the number 20 as “two-ten” or “twenty.” This should not be 
surprising: fluency in a second language is directly related to the age at which an 
individual is immersed in the language (Johnson & Swain, 1997; Oyama, 1976, 1978). 
Being fluent in two languages includes recognizing the context in which to use one or 
the other. The children used the base-10 count when doing math, and the standard 
count in other contexts (e.g., dates, ages). Kindergarten, it appears, is an ideal time for 
children to become fluent in more than one count. 

What Comes Next?   
This is actually two questions. One concerns curriculum development. The other concerns 
performance when the pilot group children were exposed to the district curriculum. 
Expansion of the curriculum. During the 2014-2015 school year, the curriculum will 
be expanded into pre-k and second grade. Pre-K teachers will use the very early lessons 
plans developed for first grade. The second grade curriculum introduces a quite modified 
multiplication table that the children will use for both multiplication and division. 
Blocks will continue to be used, in novel configurations that show the patterns involved 
in multiplication and division. A different nomenclature will be used for fractions.  
For example, instead of calling 1/3 “one third,” children will learn to call it “one of 
three equal parts.” The multiplication materials have already been piloted with an 
“honors” math group made up of the 5 fastest math students in each of three first 
grade classes. The group met once a week in the spring.   
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Post-pilot Performance. Children in the pilot group were not transitioned to the 
district curriculum until 2nd grade. The class remained intact; first grade lesson plans, 
meant to follow introduction of the program in kindergarten, were developed in their 
classroom.     

One answer to “what came next” came from their 2nd grade teacher, who reported 
that (1) children from the pilot class were (her word) amazingly fluent with numbers 
and patterns, and (2) that they had already mastered the district’s 2nd grade materials.  
She moved them on to more difficult material.    

The other answer came from district-wide testing during third grade. To see if the 
pilot curriculum had lasting effects on mathematical performance, district-wide 
computerized test scores (third grade, fifth month) for students from the original test 
and control groups were examined. The groups did not remain intact. By third grade, 
only 60% of the pilot group, and 72% of the control group were still in the school, 
and were distributed in three different classes. 

Mean and median scores for the pilot group were both 4.3 (third month, fourth 
grade); scores ranged from 3.4 (fourth month, third grade) to 5.3 (third month, fifth 
grade). Mean and median scores for the control group were both 3.9 (ninth month, 
third grade); scores ranged from 3.2 (second month, third grade) to 4.5 (fifth month, 
fourth grade). 

Overall, the performance gap was four months. The more dramatic difference 
appeared at the top: 44% of the pilot group scored at or above 4.5 (fourth grade, fifth 
month – a year ahead); only 8% of the comparison group did as well.    

What came next, I would like to think, was the product of learning, and learning 
very early in skill acquisition, to think in numbers, symbols, and patterns. 
How “New” Is the New Curriculum? 
The questioner pointed out that the curriculum is based on existing (e.g, not new) East 
Asian approaches to number names and numeracy. This is true. Nonetheless, a 
curriculum designed to teach math must use the elements (including a count) that 
define the domain. Such defining elements I refer to as “source constraints.” When 
developing something new to the domain, they are the things that one works against/ 
precludes or works with/promotes (Stokes, 2006; 2012). In fact, the effectiveness of 
the curriculum is based, in large part, on the count, which was the first and most 
significant substitution (for the American count) in the constraint model that produced 
the curriculum.6   

The count is not new. The substitutions are.  
The problem solving model used to construct the curriculum came from outside the 

domain; so too the problem solver, me. I had no stake in current theory or practice. This 
made it easy for me to preclude major elements in American curricula, and substitute in 
their places elements (the count, the single manipulative, deliberate practice) that, combined, 
created a new solution path to a new goal – having children think mathematically, in  

                                                
6  I have a confession to make regarding the count. I worked in Tokyo for several years and became 

fluent in the Japanese count. It was a necessity. I needed it on a daily basis to solve the problems of 
shopping, discovering when a train left Tokyo Eke, etc. It was, and is, efficient, and more important, easy.  
It was the first thing I thought of when I was asked to think about a new way to teach math. The papers I 
quote regarding the count were found after I already knew about the count. 
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numbers and symbols and the patterned relationships between them.7 
The truly surprising thing to me and, I suspect, to the reviewer who raised the 

novelty question, is that it all worked so well. 
 

CONCLUSION: IMPLICATIONS AND APPLICATIONS 
The Pilot Program: Implications  
The pilot demonstrates that early exposure to a curriculum using an explicit base-10 
count, a single manipulative, and a pedagogy focused on deliberate, strictly mathematical 
practice, can help very young children master – and enjoy mastering – mathematical 
material (place-value, linear estimation, double-digit addition and subtraction) not 
required by the new Common Core Standards at their grade level. Early is important 
because later achievement in mathematics is strongly related to earlier achievement 
(Aunola, Leskinen, Lerkkanen, & Nurmi, 2004; Bodovski & Farkas, 2007; Classens, 
Duncan, & Engel, 2008; Jordan, Kaplan, Ramineni, & Locuniak, 2009; Williamson, 
Appelbaum, & Epanchin, 1991). In the 2014-2015 school year, children will be exposed 
to it even earlier, in pre-K. 

The pilot also demonstrates that an impactful curriculum need not be expensive or 
difficult to teach. The materials were all made by the teacher with foam core and velcro 
(for the class sized count-and-combine charts) and poster board (for the blocks used 
on the charts or for table work). Lesson plans (presented in one handbook) were designed 
to last a week, or longer. Progress depended entirely on what happened in the classroom, 
not on a set time-frame or a succession of daily work-sheets. In comparison to the two 
math curriculum she had previously used (Everyday Math© and the Scott Forseman/ 
Addison Wesley materials), the pilot teacher found the new curriculum easier (for her) 
to teach, and easier (for the children) to learn.     

Creativity Models: Applications 
With institution-wide problems, it is often easier for an “outside” expert to propose 
unconventional substitutions/solutions. It is why companies engage outside consultants 
to solve inside problems and, I presume, why I (an expert in problem solving per se, 
but not in mathematical problem solving) was asked to develop an early math curriculum. 
It is why I [along, I believe with Arthur Cropley (Shaughnessy, 2014b)] strongly urge 
other creativity researchers to direct their attention to educational applications. Our 
“outside” expertise can make a difference. The difference could be, would be, both 
significant and – in my experience - highly satisfying.     
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APPENDIX A: SUBTRACTING WITH ONES AND TENS 
The children used red and green blocks for subtraction. The green blocks are shown 

in gray; the red blocks in white. The green blocks, placed on the left of the minus sign, 
represented the minuend. The red blocks, placed on the right side of the minus sign, 
represented the subtrahend, the number to be taken away. Children physically “took 
away” (one at a time) the same number of 10 and 1 blocks from both sides of the 
minus sign. For example, the problem 12 – 11 (ten-two minus ten-one) would look 
like this: 
 
                            
                                                                   -                                   = 
                                     
 

The children would first take away one red 10 block and one green 10 block. 
 

    
                                      -                   =                          

                                            
 

 
                   

They would then take away one red and one green 1 block.  

     
                               -                   = 

                                            
 

 
When there were no red blocks left, they moved the remaining green block to the 

right side of the equals side.   
    

                                                                     -                                =   
  

They then wrote out (12 – 11 = 1) and recited (one-ten-two minus one-ten-one 
equals one) the solution.  

 

  

10 

 

10 

 

  

10 10 



122      STOKES 

APPENDIX B: MONTH-BY-MONTH INTRODUCTION TO NUMERICAL 
CONCEPTS IN PILOT AND CONTROL CLASSES. 

Control  Group:  District curriculum 

October-November: Numbers through 5 
  Counting, Reading, Writing, Comparing 

November-December: Numbers through 10 
  Ordering, Ordinal numbers through 10th 

January-February: Numbers through 31 
  Skip counting by 2s and 5s 

May: Readiness for addition and subtraction 
   Ways to make 4 through 10 
Understanding addition 
   Using the plus sign/Finding the sum 

June  Understanding subtraction 
   Using the minus sign/Finding the difference 
Counting and number patterns to 100 
   Counting by 2s, 5s and 10s 

 

Control  Group: Explicit base-10 curriculum 

September-October: Count and combine (addition) numbers through 6 
November:  Count and combine numbers through 10 

Count and write numbers 11 to 20 (ten-one to two-ten) 
Recognize  numeric patterns 

December: Count and write numbers through 30 (three-ten) 
Count by 10s to100 (ten to ten-ten) 
Introduce minus sign 

January: Count and combine numbers through 30 
Count and write numbers to 40 (four-ten) 
Introduce the 10 block (see Fig. 3 and 5) 

February-March: Subtraction 
Count and write numbers through 50 (five-ten)  

April-May: Word problems 
Number line 
Double-digit addition and subtraction with 10-blocks 

 
 
 


